3.378 \(\int \frac{x^8}{(a+b x^3) \sqrt{c+d x^3}} \, dx\)

Optimal. Leaf size=104 \[ -\frac{2 a^2 \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 b^{5/2} \sqrt{b c-a d}}-\frac{2 \sqrt{c+d x^3} (a d+b c)}{3 b^2 d^2}+\frac{2 \left (c+d x^3\right )^{3/2}}{9 b d^2} \]

[Out]

(-2*(b*c + a*d)*Sqrt[c + d*x^3])/(3*b^2*d^2) + (2*(c + d*x^3)^(3/2))/(9*b*d^2) - (2*a^2*ArcTanh[(Sqrt[b]*Sqrt[
c + d*x^3])/Sqrt[b*c - a*d]])/(3*b^(5/2)*Sqrt[b*c - a*d])

________________________________________________________________________________________

Rubi [A]  time = 0.104588, antiderivative size = 104, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {446, 88, 63, 208} \[ -\frac{2 a^2 \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 b^{5/2} \sqrt{b c-a d}}-\frac{2 \sqrt{c+d x^3} (a d+b c)}{3 b^2 d^2}+\frac{2 \left (c+d x^3\right )^{3/2}}{9 b d^2} \]

Antiderivative was successfully verified.

[In]

Int[x^8/((a + b*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(-2*(b*c + a*d)*Sqrt[c + d*x^3])/(3*b^2*d^2) + (2*(c + d*x^3)^(3/2))/(9*b*d^2) - (2*a^2*ArcTanh[(Sqrt[b]*Sqrt[
c + d*x^3])/Sqrt[b*c - a*d]])/(3*b^(5/2)*Sqrt[b*c - a*d])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^8}{\left (a+b x^3\right ) \sqrt{c+d x^3}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x^2}{(a+b x) \sqrt{c+d x}} \, dx,x,x^3\right )\\ &=\frac{1}{3} \operatorname{Subst}\left (\int \left (\frac{-b c-a d}{b^2 d \sqrt{c+d x}}+\frac{a^2}{b^2 (a+b x) \sqrt{c+d x}}+\frac{\sqrt{c+d x}}{b d}\right ) \, dx,x,x^3\right )\\ &=-\frac{2 (b c+a d) \sqrt{c+d x^3}}{3 b^2 d^2}+\frac{2 \left (c+d x^3\right )^{3/2}}{9 b d^2}+\frac{a^2 \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^3\right )}{3 b^2}\\ &=-\frac{2 (b c+a d) \sqrt{c+d x^3}}{3 b^2 d^2}+\frac{2 \left (c+d x^3\right )^{3/2}}{9 b d^2}+\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^3}\right )}{3 b^2 d}\\ &=-\frac{2 (b c+a d) \sqrt{c+d x^3}}{3 b^2 d^2}+\frac{2 \left (c+d x^3\right )^{3/2}}{9 b d^2}-\frac{2 a^2 \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 b^{5/2} \sqrt{b c-a d}}\\ \end{align*}

Mathematica [A]  time = 0.14478, size = 91, normalized size = 0.88 \[ \frac{2 \sqrt{c+d x^3} \left (-3 a d-2 b c+b d x^3\right )}{9 b^2 d^2}-\frac{2 a^2 \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 b^{5/2} \sqrt{b c-a d}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^8/((a + b*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(2*Sqrt[c + d*x^3]*(-2*b*c - 3*a*d + b*d*x^3))/(9*b^2*d^2) - (2*a^2*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c
 - a*d]])/(3*b^(5/2)*Sqrt[b*c - a*d])

________________________________________________________________________________________

Maple [C]  time = 0.035, size = 488, normalized size = 4.7 \begin{align*}{\frac{1}{{b}^{2}} \left ( b \left ({\frac{2\,{x}^{3}}{9\,d}\sqrt{d{x}^{3}+c}}-{\frac{4\,c}{9\,{d}^{2}}\sqrt{d{x}^{3}+c}} \right ) -{\frac{2\,a}{3\,d}\sqrt{d{x}^{3}+c}} \right ) }-{\frac{{\frac{i}{3}}{a}^{2}\sqrt{2}}{{b}^{2}{d}^{2}}\sum _{{\it \_alpha}={\it RootOf} \left ( b{{\it \_Z}}^{3}+a \right ) }{\frac{1}{ad-bc}\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{id\sqrt{3} \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},{\frac{b}{2\, \left ( ad-bc \right ) d} \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(b*x^3+a)/(d*x^3+c)^(1/2),x)

[Out]

1/b^2*(b*(2/9/d*x^3*(d*x^3+c)^(1/2)-4/9*c*(d*x^3+c)^(1/2)/d^2)-2/3*a/d*(d*x^3+c)^(1/2))-1/3*I*a^2/b^2/d^2*2^(1
/2)*sum(1/(a*d-b*c)*(-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3
))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3
^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*
d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x
+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),1/2*b/d*(2*I*(-d^2*c)^(1
/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/(a*d-b*c),
(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*
b+a))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.84879, size = 593, normalized size = 5.7 \begin{align*} \left [\frac{3 \, \sqrt{b^{2} c - a b d} a^{2} d^{2} \log \left (\frac{b d x^{3} + 2 \, b c - a d - 2 \, \sqrt{d x^{3} + c} \sqrt{b^{2} c - a b d}}{b x^{3} + a}\right ) - 2 \,{\left (2 \, b^{3} c^{2} + a b^{2} c d - 3 \, a^{2} b d^{2} -{\left (b^{3} c d - a b^{2} d^{2}\right )} x^{3}\right )} \sqrt{d x^{3} + c}}{9 \,{\left (b^{4} c d^{2} - a b^{3} d^{3}\right )}}, \frac{2 \,{\left (3 \, \sqrt{-b^{2} c + a b d} a^{2} d^{2} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-b^{2} c + a b d}}{b d x^{3} + b c}\right ) -{\left (2 \, b^{3} c^{2} + a b^{2} c d - 3 \, a^{2} b d^{2} -{\left (b^{3} c d - a b^{2} d^{2}\right )} x^{3}\right )} \sqrt{d x^{3} + c}\right )}}{9 \,{\left (b^{4} c d^{2} - a b^{3} d^{3}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[1/9*(3*sqrt(b^2*c - a*b*d)*a^2*d^2*log((b*d*x^3 + 2*b*c - a*d - 2*sqrt(d*x^3 + c)*sqrt(b^2*c - a*b*d))/(b*x^3
 + a)) - 2*(2*b^3*c^2 + a*b^2*c*d - 3*a^2*b*d^2 - (b^3*c*d - a*b^2*d^2)*x^3)*sqrt(d*x^3 + c))/(b^4*c*d^2 - a*b
^3*d^3), 2/9*(3*sqrt(-b^2*c + a*b*d)*a^2*d^2*arctan(sqrt(d*x^3 + c)*sqrt(-b^2*c + a*b*d)/(b*d*x^3 + b*c)) - (2
*b^3*c^2 + a*b^2*c*d - 3*a^2*b*d^2 - (b^3*c*d - a*b^2*d^2)*x^3)*sqrt(d*x^3 + c))/(b^4*c*d^2 - a*b^3*d^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{8}}{\left (a + b x^{3}\right ) \sqrt{c + d x^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8/(b*x**3+a)/(d*x**3+c)**(1/2),x)

[Out]

Integral(x**8/((a + b*x**3)*sqrt(c + d*x**3)), x)

________________________________________________________________________________________

Giac [A]  time = 1.11457, size = 143, normalized size = 1.38 \begin{align*} \frac{2 \, a^{2} \arctan \left (\frac{\sqrt{d x^{3} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{3 \, \sqrt{-b^{2} c + a b d} b^{2}} + \frac{2 \,{\left ({\left (d x^{3} + c\right )}^{\frac{3}{2}} b^{2} d^{4} - 3 \, \sqrt{d x^{3} + c} b^{2} c d^{4} - 3 \, \sqrt{d x^{3} + c} a b d^{5}\right )}}{9 \, b^{3} d^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

2/3*a^2*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*b^2) + 2/9*((d*x^3 + c)^(3/2)*b^2
*d^4 - 3*sqrt(d*x^3 + c)*b^2*c*d^4 - 3*sqrt(d*x^3 + c)*a*b*d^5)/(b^3*d^6)